Przejdź do zawartości

Filtr o nieskończonej odpowiedzi impulsowej

Z Wikipedii, wolnej encyklopedii

Filtr o nieskończonej odpowiedzi impulsowej (IIR filter ang. Infinite Impulse Response) – rodzaj filtru cyfrowego, który w odróżnieniu od filtrów FIR jest układem rekursywnym. IIR oznacza nieskończoną odpowiedź impulsową (w polskiej literaturze stosowana jest również nazwa filtr NOI). Znaczy to tyle, że reakcja na pobudzenie o skończonym czasie trwania jest teoretycznie nieskończenie długa. Jest to efektem występowania pętli sprzężenia zwrotnego widocznej na poniższym schemacie blokowym (zob. schemat filtru FIR).

Filtr IIR

Na powyższym schemacie moduły oznaczają opóźnienie sygnału o jedną próbkę, natomiast oraz są współczynnikami filtru.

Transmitancję filtru IIR można opisać następująco:

gdzie:

transformata Z wyjścia,
– transformata Z wejścia

lub po rozpisaniu wzorów na wielomiany opisujące bieguny i zera:

Zera transmitancji determinowane są przez miejsca zerowe wielomianu licznika, zaś miejsca zerowe wielomianu mianownika określają bieguny transmitancji.

Zalety i wady

[edytuj | edytuj kod]

Ze względu na dużą elastyczność w kształtowaniu przebiegu funkcji za pomocą ilorazu wielomianów, znacznie łatwiej uzyskać pożądaną charakterystykę używając filtru IIR niskiego rzędu niż filtru FIR. Wynikają z tego dwie podstawowe zalety filtrów IIR w porównaniu do FIR:

  • niska złożoność obliczeniowa,
  • niewielkie zapotrzebowanie na pamięć operacyjną.

Te zalety spowodowały duże zainteresowanie filtrami IIR i burzliwy rozwój teorii ich projektowania w latach 70. XX w., które przypadają na początki rozwoju technik cyfrowego przetwarzania sygnałów, gdy nie były dostępne procesory o odpowiedniej mocy obliczeniowej.

Do wad filtrów IIR należy zaliczyć:

  • Rekursywność filtru wprowadza potencjalne zagrożenie utraty stabilności (odpowiedź filtru w sposób niekontrolowany narasta do nieskończoności); niestabilność może mieć miejsce wtedy, gdy bieguny transmitancji (miejsca zerowe wielomianu w mianowniku) znajdą się poza okręgiem jednostkowym na płaszczyźnie zespolonej.
  • Projektowanie filtrów IIR jest znacznie trudniejsze niż w przypadku filtrów FIR – nie tylko ze względu na dodatkowy warunek zapewnienia stabilności.
  • Filtry IIR są znacznie bardziej wrażliwe na błędy zaokrągleń: zaokrąglenia wartości współczynników mogą znacząco zmienić charakterystykę, a zaokrąglenia wartości sygnału i wyników pośrednich wprowadzają szum, który może się akumulować.
  • Nie można ich zaimplementować jako filtrów o liniowej fazie, czyli takich, które wprowadzają takie samo opóźnienie grupowe dla wszystkich składowych częstotliwościowych przepuszczanego sygnału.

Z uwagi na rosnącą wydajność układów cyfrowych i procesorów sygnałowych, filtry IIR nie są obecnie tak chętnie wykorzystywane jak dawniej, a największą popularnością cieszą się filtry FIR, które nie mają wyżej wymienionych wad.

Przykład

[edytuj | edytuj kod]

Rozważane jest działanie filtru o nieskończonej odpowiedzi impulsowej. Założeniem jest estymacja średniego kosztu użytkowania energii elektrycznej na podstawie rachunku za prąd z bieżącego miesiąca oraz oszacowanej wartości z poprzedniego miesiąca

gdzie:

– numer miesiąca,
– wartość rachunku za bieżący miesiąc,
– oszacowana wartość w bieżącym miesiącu,
– oszacowanie wartości średniej w poprzednim miesiącu.

Dla pojawia się problem brzegowy, ponieważ nie dysponuje się oszacowaniem – przyjęto, że Przykładowo:

Wartości kolejnych próbek wejściowych (rachunków) oraz szacowanych wartości średnich przedstawia tabela:

1 2 3 4 5 6 7 8 9 10 11 12
24 27 31 59 33 37 0 0 0 0 0 0
12 19,5 25,3 42,1 37,6 37,3 18,6 9,3 4,7 2,3 1,2 0,6

Wykres próbek wejściowych oraz wyjściowych przedstawiony jest na wykresie poniżej (sygnał określony jest tylko dla dyskretnych wartości natomiast linie pomagają zaobserwować trend sygnału):

Przykładowy uśredniający filtr NOI

Na podstawie tego prostego przykładu można wysnuć następujące, użyteczne wnioski:

  • zaprojektowany filtr wygładza sygnał wejściowy – nagła zmiana sygnału wejściowego dla została stłumiona,
  • od chwili sygnał wejściowy zanika – sygnał wyjściowy dąży do zera, aczkolwiek tej wartości nigdy nie osiągnie – jest to cecha charakterystyczna filtrów o nieskończonej odpowiedzi impulsowej (NOI).

Realizację filtru z przykładu przestawiono na rysunku poniżej, gdzie blok opóźniający o jedną próbkę oznaczono przez

Przykładowy uśredniający filtr NOI

Zobacz też

[edytuj | edytuj kod]

Bibliografia

[edytuj | edytuj kod]
  • Bartosz Ziółko, M. Ziółko: Przetwarzanie mowy. Wydawnictwa AGH, 2012.
  • Michał Tadeusiewicz: Signals and Systems. Wydawnictwo Politechniki Łódzkiej, 2004.
  • Przemysław Barański: Przekształcenie Z. Zastosowania w filtracji cyfrowej sygnałów – zbiór zadań. Wydawnictwo Politechniki Łódzkiej, 2014. ISBN 978-83-7283-638-0.

Linki zewnętrzne

[edytuj | edytuj kod]